首页> 外文OA文献 >Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators
【2h】

Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators

机译:Radon的快速算法和高效的GpU实现   变换和反投影算子表示为卷积   运营商

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Radon transform and its adjoint, the back-projection operator, can bothbe expressed as convolutions in log-polar coordinates. Hence, fast algorithmsfor the application of the operators can be constructed by using FFT, if datais resampled at log-polar coordinates. Radon data is typically measured on anequally spaced grid in polar coordinates, and reconstructions are represented(as images) in Cartesian coordinates. Therefore, in addition to FFT, severalsteps of interpolation have to be conducted in order to apply the Radontransform and the back-projection operator by means of convolutions. Both the interpolation and the FFT operations can be efficiently implementedon Graphical Processor Units (GPUs). For the interpolation, it is possible tomake use of the fact that linear interpolation is hard-wired on GPUs, meaningthat it has the same computational cost as direct memory access. Cubic orderinterpolation schemes can be constructed by combining linear interpolationsteps which provides important computation speedup. We provide details about how the Radon transform and the back-projection canbe implemented efficiently as convolution operators on GPUs. For large datasizes, speedups of about 10 times are obtained in relation to the computationaltimes of other software packages based on GPU implementations of the Radontransform and the back-projection operator. Moreover, speedups of more than a1000 times are obtained against the CPU-implementations provided in the MATLABimage processing toolbox.
机译:Radon变换及其伴随元素(反投影算子)都可以表示为对数极坐标中的卷积。因此,如果在对数极坐标处对数据进行重新采样,则可以通过使用FFT构建用于运算符应用的快速算法。 data数据通常在极坐标上等距分布的网格上进行测量,并且重建以笛卡尔坐标表示(作为图像)。因此,除了FFT外,还必须执行几步插值,以便通过卷积应用Radontransform和反投影算符。插值和FFT运算均可在图形处理器单元(GPU)上高效实现。对于插值,可以利用线性插值在GPU上进行硬连线的事实,这意味着它的计算成本与直接内存访问相同。可以通过组合线性插值步骤来构建三次有序插值方案,这可以提供重要的计算速度。我们提供了有关Radon变换和反投影如何作为GPU上的卷积运算符有效实现的详细信息。对于大数据量,基于Radontransform和反投影运算符的GPU实现,相对于其他软件包的计算时间,可获得约10倍的加速。此外,相对于MATLABimage处理工具箱中提供的CPU实现,可获得超过1000倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号